


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Intro continued   
3 Applications of visual analytics, data, and basic tasks 
4 Data preparation and reduction   
5 Data reduction and similarity metrics Project 1 out 
6 Dimension reduction 

7 Introduction to D3  Project 2 out 
8 Bias in visualization 
9 Perception and cognition   

10 Visual design and aesthetics   
11 Cluster and pattern analysis   
12 High-Dimensional data visualization: linear methods 
13 High-D data vis.: non-linear methods, categorical data  Project 3 out 
14 Principles of interaction   
15 Visual analytics and the visual sense making process 
16 VA design and evaluation 
17 Visualization of graphs and hierarchies 
18 Visualization of time-varying and time-series data Project 4 out 
19 Midterm   
20 Maps and geo-vis   
21 Computer graphics and volume rendering 
22 Techniques to visualize spatial (3D) data Project 4 halfway report due 
23 Scientific and medical visualization 
24 Scientific and medical visualization 
25 Non-photorealistic rendering 
26 Memorable visualizations, visual embellishments  Project 5 out 
27 Infographics design   
28 Projects Hall of Fame demos 



Data Reduction 



Dimension Reduction 

3D 2D 



Are there attributes that “go together”? 

 

 

 

 

 

 

 

Can you name a few?  

 

 

 

 

 

 

 

 



Physical attributes 

 color 

 number of doors 

 number of wheels 

 retractable roof 

 height  

 length 

 frames around side windows 

 

Which attributes are useful to distinguish SUVs from convertibles? 

 number of doors (4 vs. 2) --> numerical, two levels 

 retractable roof (no vs. yes) --> categorical, two levels  

 frames around side windows (yes vs. no) --> categorical, two levels 

 height (higher vs. lower) --> numerical, many levels 

 



Which attributes are not so useful? 

 number of wheels (constant 4) --> no discriminative power 

 length (short and long SUVs, convertibles) --> confounding  

 color (colors are seemingly random, or are they?) 

 

 

 

 

 

Is color useful? 

 the convertibles seem to have more vibrant colors (red, yellow, …) 

 so maybe we made a discovery   

 



Need to consider more than two attributes 
 height attribute would have distinguished the Range Rover from 

the convertibles and caused it to be an outlier  

retractable  

roof 

frames around  

side windows 

a new type of SUV  



New classes are constantly evolving over time 

 this is known as cluster evolution  

 measuring more features will increase the chance of discovery 

retractable  

roof 

new class: the convertible SUV 

height 

why can empty 

feature spaces 

be interesting or 

useful? 



The more data (examples) the better  

 increases the chances to discover the rare specimen 

 

 

 

 

 

 

 but some attributes are useless  

 we can cull them away 

 perform attribute reduction or dimension reduction  

 



By axis rotation (linear methods) 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By transformation (non-linear methods)  
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MDS) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Covariance 

 measures how much two random variables change together  

 

 

 

 

 

 

For N variable we have N2 variable pairs  

 we can write them in a matrix of size N2  
 the covariance matrix  

 for two variables X1 and X2 



Covariance cov(X,Y) 

 

 

 

 

Pearson’s correlation r  

 is covariance normalized by the individual variances for X and Y 

 

 

 

mean of all data item 
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attributes X and Y, resp. 
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individual variances 

for attributes X and Y 



Correlation rates between -1 and 1: 

 

 

 

 

Important to note: 

 correlation is defined for linear relationships 

 visualization can help 

 none of these point distributions have correlations: 

 



Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  
 define pairwise covariance among all of these variables  

 construct a covariance matrix  

 

 

 

 

 

 a correlation matrix would just list the correlations instead 
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just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  
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Find the principal components (factors) of a distribution 

 

First characterize the distribution by  
 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 perform QR factorization or LU decomposition to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 

1Q Q C
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When to use what? 

 use the covariance matrix when the variable scales are similar  

 use the correlation matrix when the variables are on different 

scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 
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After PCA 

 l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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possible 

threshold 

(explain 

75% of data 

variance) 

keep top 3 principal components  reduce dimensions by a factor of 4/7 = 57%  

Create a scree plot 

 plots a histogram of the Eigenvalues ordered by magnitude 

 plots the explained variance as a curve    



Take a set of faces: 
 each image has 

60x60 pixels 

 can write it as a 
60x60 D = 3,600 D 
vector  

 space of images is 
therefore 3600 D 

 each image is a 
point in that space 

 

Perform PCA 
 will yield 3,600 

Eigenvectors in 
3,600 D space  

 each is a face 

 called “Eigenfaces”  

 

 

 

 



We can reconstruct a face as a linear combination of these 

Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 



The axes of the space generated by PCA do not mean much 

semantically 

 the Eigenvectors are combinations of the actual data dimensions  

 can we use these to determine the most important data 

dimensions which would be more meaningful? 

 we shall explain it via an example  

 see next slides  



A More Challenging Example 
• Data from research on habitat definition 
of the endangered Baw Baw frog 

• 16 environmental and structural variables 
measured at each of 124 sites 

• Correlation matrix used because 
variables have different units 

Philoria frosti 



Axis Eigenvalue 
% of 

Variance 
Cumulative % 
of Variance 

1 5.855 36.60 36.60 

2 3.420 21.38 57.97 

3 1.122 7.01 64.98 

4 1.116 6.97 71.95 

5 0.982 6.14 78.09 

6 0.725 4.53 82.62 

7 0.563 3.52 86.14 

8 0.529 3.31 89.45 

9 0.476 2.98 92.42 

10 0.375 2.35 94.77 

Eigenvalues 



How Many Axes Are Needed? 
• Does the (k+1)th principal axis represent 
more variance than would be expected 
by chance? 

• Several tests and rules have been 
proposed 

• A common “rule of thumb” when PCA is 
based on correlations is that axes with 
eigenvalues > 1 are worth interpreting 

• In our example 4 Eigenvectors fit this 
criterion (we shall keep 3 for simplicity) 

 



Baw Baw Frog - PCA of 16 Habitat Variables
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Interlude - What’s a “Loading”? 
• The amount of weight a data dimension 

has on a principal component 

– petal length/width have a high loading on PC1 

– sepal width has a high loading on PC2 

 

• Another observation 

– projection into PC basis                                  

can also bring out                                            

clusters better 

– since spread is                                                 

maximized 

 

PC1 

PC2 

flower dataset 



Interpreting Eigenvectors 

• Correlations 
between variables 
and the principal 
axes are known as 
loadings 

• Each element of 
the eigenvectors 
represents the 
contribution of a 
given variable to a 
component 

• The loadings of 
variables on the 
first three PCs 
are shown here 

  PC 1 PC 2 PC 3 

Altitude 0.3842 0.0659 -0.1177 

pH -0.1159 0.1696 -0.5578 

Cond -0.2729 -0.1200 0.3636 

TempSurf 0.0538 -0.2800 0.2621 

Relief -0.0765 0.3855 -0.1462 

maxERht 0.0248 0.4879 0.2426 

avERht 0.0599 0.4568 0.2497 

%ER 0.0789 0.4223 0.2278 

%VEG 0.3305 -0.2087 -0.0276 

%LIT -0.3053 0.1226 0.1145 

%LOG -0.3144 0.0402 -0.1067 

%W -0.0886 -0.0654 -0.1171 

H1Moss 0.1364 -0.1262 0.4761 

DistSWH -0.3787 0.0101 0.0042 

DistSW -0.3494 -0.1283 0.1166 

DistMF 0.3899 0.0586 -0.0175 



Significance of Variables 

• We can compute the significance of the 
variables as the sum of squared loadings on to the 
most significant Eigenvectors we selected (3 in our 
example)  

• The next slide shows the table of the last slide 
expanded with these squared loadings 

• We can then sort the table by the squared 
loadings and make a scree plot 

• The most significant variables are those above 
some chosen cutoff, for example 0.4 (marked in 
yellow in the table) 

 



Significance of Variables 
  PC 1 PC 2 PC 3 

sum of squared 
loadings (sqrt)  

Altitude 0.3842 0.0659 -0.1177 0.41 

pH -0.1159 0.1696 -0.5578 0.59 

Cond -0.2729 -0.1200 0.3636 0.47 

TempSurf 0.0538 -0.2800 0.2621 0.39 

Relief -0.0765 0.3855 -0.1462 0.42 

maxERht 0.0248 0.4879 0.2426 0.55 

avERht 0.0599 0.4568 0.2497 0.52 

%ER 0.0789 0.4223 0.2278 0.49 

%VEG 0.3305 -0.2087 -0.0276 0.39 

%LIT -0.3053 0.1226 0.1145 0.35 

%LOG -0.3144 0.0402 -0.1067 0.33 

%W -0.0886 -0.0654 -0.1171 0.16 

H1Moss 0.1364 -0.1262 0.4761 0.51 

DistSWH -0.3787 0.0101 0.0042 0.38 

DistSW -0.3494 -0.1283 0.1166 0.39 

DistMF 0.3899 0.0586 -0.0175 0.39 



Significance of Variables 

• Scree plot   

 

only eliminate  

very weak  

variables 

more aggressive  

reduction of variables 
variables considered  

significant 

chosen  

significance  

threshold  



Learned about: 
 feature vectors, each feature is a data attribute, dimension  

 distinguish useful from not so useful  features with regards to 
data discrimination  dimension reduction 

 plot data into feature space and observe clusters 

 

 correlation vs. covariance 

 algorithmic dimension reduction, summary of popular dimension 
reduction schemes – linear vs. non-linear  

 

 basic linear scheme: Principal Component Analysis (PCA)  

 application of PCA to face detection and generation  

 scree plot to visualize and select the most important PCA axes  

 use of PCA loading analysis to determine the most significant 
data features 

 

 

 

 

 

 


