


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Intro continued   
3 Applications of visual analytics, data, and basic tasks 
4 Data preparation and reduction   
5 Data reduction and similarity metrics Project 1 out 
6 Dimension reduction 

7 Introduction to D3  Project 2 out 
8 Bias in visualization 
9 Perception and cognition   

10 Visual design and aesthetics   
11 Cluster and pattern analysis   
12 High-Dimensional data visualization: linear methods 
13 High-D data vis.: non-linear methods, categorical data  Project 3 out 
14 Principles of interaction   
15 Visual analytics and the visual sense making process 
16 VA design and evaluation 
17 Visualization of graphs and hierarchies 
18 Visualization of time-varying and time-series data Project 4 out 
19 Midterm   
20 Maps and geo-vis   
21 Computer graphics and volume rendering 
22 Techniques to visualize spatial (3D) data Project 4 halfway report due 
23 Scientific and medical visualization 
24 Scientific and medical visualization 
25 Non-photorealistic rendering 
26 Memorable visualizations, visual embellishments  Project 5 out 
27 Infographics design   
28 Projects Hall of Fame demos 



Data Reduction 



Dimension Reduction 

3D 2D 



Are there attributes that “go together”? 

 

 

 

 

 

 

 

Can you name a few?  

 

 

 

 

 

 

 

 



Physical attributes 

 color 

 number of doors 

 number of wheels 

 retractable roof 

 height  

 length 

 frames around side windows 

 

Which attributes are useful to distinguish SUVs from convertibles? 

 number of doors (4 vs. 2) --> numerical, two levels 

 retractable roof (no vs. yes) --> categorical, two levels  

 frames around side windows (yes vs. no) --> categorical, two levels 

 height (higher vs. lower) --> numerical, many levels 

 



Which attributes are not so useful? 

 number of wheels (constant 4) --> no discriminative power 

 length (short and long SUVs, convertibles) --> confounding  

 color (colors are seemingly random, or are they?) 

 

 

 

 

 

Is color useful? 

 the convertibles seem to have more vibrant colors (red, yellow, …) 

 so maybe we made a discovery   

 



Need to consider more than two attributes 
 height attribute would have distinguished the Range Rover from 

the convertibles and caused it to be an outlier  

retractable  

roof 

frames around  

side windows 

a new type of SUV  



New classes are constantly evolving over time 

 this is known as cluster evolution  

 measuring more features will increase the chance of discovery 

retractable  

roof 

new class: the convertible SUV 

height 

why can empty 

feature spaces 

be interesting or 

useful? 



The more data (examples) the better  

 increases the chances to discover the rare specimen 

 

 

 

 

 

 

 but some attributes are useless  

 we can cull them away 

 perform attribute reduction or dimension reduction  

 



By axis rotation (linear methods) 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By transformation (non-linear methods)  
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MDS) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Covariance 

 measures how much two random variables change together  

 

 

 

 

 

 

For N variable we have N2 variable pairs  

 we can write them in a matrix of size N2  
 the covariance matrix  

 for two variables X1 and X2 



Covariance cov(X,Y) 

 

 

 

 

Pearson’s correlation r  

 is covariance normalized by the individual variances for X and Y 
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Correlation rates between -1 and 1: 

 

 

 

 

Important to note: 

 correlation is defined for linear relationships 

 visualization can help 

 none of these point distributions have correlations: 

 



Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  
 define pairwise covariance among all of these variables  

 construct a covariance matrix  

 

 

 

 

 

 a correlation matrix would just list the correlations instead 
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just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  
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Find the principal components (factors) of a distribution 

 

First characterize the distribution by  
 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 perform QR factorization or LU decomposition to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 

1Q Q C
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When to use what? 

 use the covariance matrix when the variable scales are similar  

 use the correlation matrix when the variables are on different 

scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 
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After PCA 

 l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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possible 

threshold 

(explain 

75% of data 

variance) 

keep top 3 principal components  reduce dimensions by a factor of 4/7 = 57%  

Create a scree plot 

 plots a histogram of the Eigenvalues ordered by magnitude 

 plots the explained variance as a curve    



Take a set of faces: 
 each image has 

60x60 pixels 

 can write it as a 
60x60 D = 3,600 D 
vector  

 space of images is 
therefore 3600 D 

 each image is a 
point in that space 

 

Perform PCA 
 will yield 3,600 

Eigenvectors in 
3,600 D space  

 each is a face 

 called “Eigenfaces”  

 

 

 

 



We can reconstruct a face as a linear combination of these 

Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 



The axes of the space generated by PCA do not mean much 

semantically 

 the Eigenvectors are combinations of the actual data dimensions  

 can we use these to determine the most important data 

dimensions which would be more meaningful? 

 we shall explain it via an example  

 see next slides  



A More Challenging Example 
• Data from research on habitat definition 
of the endangered Baw Baw frog 

• 16 environmental and structural variables 
measured at each of 124 sites 

• Correlation matrix used because 
variables have different units 

Philoria frosti 



Axis Eigenvalue 
% of 

Variance 
Cumulative % 
of Variance 

1 5.855 36.60 36.60 

2 3.420 21.38 57.97 

3 1.122 7.01 64.98 

4 1.116 6.97 71.95 

5 0.982 6.14 78.09 

6 0.725 4.53 82.62 

7 0.563 3.52 86.14 

8 0.529 3.31 89.45 

9 0.476 2.98 92.42 

10 0.375 2.35 94.77 

Eigenvalues 



How Many Axes Are Needed? 
• Does the (k+1)th principal axis represent 
more variance than would be expected 
by chance? 

• Several tests and rules have been 
proposed 

• A common “rule of thumb” when PCA is 
based on correlations is that axes with 
eigenvalues > 1 are worth interpreting 

• In our example 4 Eigenvectors fit this 
criterion (we shall keep 3 for simplicity) 

 



Baw Baw Frog - PCA of 16 Habitat Variables
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Interlude - What’s a “Loading”? 
• The amount of weight a data dimension 

has on a principal component 

– petal length/width have a high loading on PC1 

– sepal width has a high loading on PC2 

 

• Another observation 

– projection into PC basis                                  

can also bring out                                            

clusters better 

– since spread is                                                 

maximized 

 

PC1 

PC2 

flower dataset 



Interpreting Eigenvectors 

• Correlations 
between variables 
and the principal 
axes are known as 
loadings 

• Each element of 
the eigenvectors 
represents the 
contribution of a 
given variable to a 
component 

• The loadings of 
variables on the 
first three PCs 
are shown here 

  PC 1 PC 2 PC 3 

Altitude 0.3842 0.0659 -0.1177 

pH -0.1159 0.1696 -0.5578 

Cond -0.2729 -0.1200 0.3636 

TempSurf 0.0538 -0.2800 0.2621 

Relief -0.0765 0.3855 -0.1462 

maxERht 0.0248 0.4879 0.2426 

avERht 0.0599 0.4568 0.2497 

%ER 0.0789 0.4223 0.2278 

%VEG 0.3305 -0.2087 -0.0276 

%LIT -0.3053 0.1226 0.1145 

%LOG -0.3144 0.0402 -0.1067 

%W -0.0886 -0.0654 -0.1171 

H1Moss 0.1364 -0.1262 0.4761 

DistSWH -0.3787 0.0101 0.0042 

DistSW -0.3494 -0.1283 0.1166 

DistMF 0.3899 0.0586 -0.0175 



Significance of Variables 

• We can compute the significance of the 
variables as the sum of squared loadings on to the 
most significant Eigenvectors we selected (3 in our 
example)  

• The next slide shows the table of the last slide 
expanded with these squared loadings 

• We can then sort the table by the squared 
loadings and make a scree plot 

• The most significant variables are those above 
some chosen cutoff, for example 0.4 (marked in 
yellow in the table) 

 



Significance of Variables 
  PC 1 PC 2 PC 3 

sum of squared 
loadings (sqrt)  

Altitude 0.3842 0.0659 -0.1177 0.41 

pH -0.1159 0.1696 -0.5578 0.59 

Cond -0.2729 -0.1200 0.3636 0.47 

TempSurf 0.0538 -0.2800 0.2621 0.39 

Relief -0.0765 0.3855 -0.1462 0.42 

maxERht 0.0248 0.4879 0.2426 0.55 

avERht 0.0599 0.4568 0.2497 0.52 

%ER 0.0789 0.4223 0.2278 0.49 

%VEG 0.3305 -0.2087 -0.0276 0.39 

%LIT -0.3053 0.1226 0.1145 0.35 

%LOG -0.3144 0.0402 -0.1067 0.33 

%W -0.0886 -0.0654 -0.1171 0.16 

H1Moss 0.1364 -0.1262 0.4761 0.51 

DistSWH -0.3787 0.0101 0.0042 0.38 

DistSW -0.3494 -0.1283 0.1166 0.39 

DistMF 0.3899 0.0586 -0.0175 0.39 



Significance of Variables 

• Scree plot   

 

only eliminate  

very weak  

variables 

more aggressive  

reduction of variables 
variables considered  

significant 

chosen  

significance  

threshold  



Learned about: 
 feature vectors, each feature is a data attribute, dimension  

 distinguish useful from not so useful  features with regards to 
data discrimination  dimension reduction 

 plot data into feature space and observe clusters 

 

 correlation vs. covariance 

 algorithmic dimension reduction, summary of popular dimension 
reduction schemes – linear vs. non-linear  

 

 basic linear scheme: Principal Component Analysis (PCA)  

 application of PCA to face detection and generation  

 scree plot to visualize and select the most important PCA axes  

 use of PCA loading analysis to determine the most significant 
data features 

 

 

 

 

 

 


